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4 - ABSTRACT

development.

¥ Adding a reversibility axiom to the other axioms of Luce's

(1959) probabilistic ranking theory results in an impossibility theorem -

that all alternatives in on alternative set are equally likely to be

chosen (i.e., that preferences are random). This impossibility theorem
is generally avoided by removing the reversibility axiom.

algebraic methods such a modified theory is shown to contain a theoren
similar to the impossibility result. Thes. results are discussed

. within the framework of methematical model theory - model theory deals
with the relatioas between sets of sentences (theories) and the

structures which satisfy these sentences (models) - to illustrate

the applicability of model theory as an analytic tocl in theory

Using simple
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Abstract

Adding a reversibility axiom to the other axioms of Luce's (1959)

probabilistic ranking theory results in an impossibility theorem - 4

that all alternatives in an a2lternative set are equally likely F
to be chosen (i.e. that preferences are random;. This impossibility
theorem is generally avoided by removing the reversibility axiom.
Using simple algebraic methods such a modified theory is shown

to contain a theorem similiar to the impossibility result. These
results are discussed within the framework of mathematical model

theory - model theory decals with the relations between sets of

i R A i L Wi
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sentences (theories) and the structures which satisfv these

sentences (models) - to illustrate the applicability of model i

255

theory as an analytic tool in theory development.
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Considerable work by mathematics] psychologists has been devoted to

f' developing axiomatic theories of choices. In this paper, a particular 5 9
% set of p-obabilistic ranking theories (PRT) (Luce & Suppes, 1965) will i.:
T? be examined from a model-theoretlc perspective. Probabllistic theories f:
i? of choice are those which‘assume that an individual's cholce responses f ?
4 are governed by probabllity mechanisms and ranking theorles are those i
f ) which attempt to explain (describe) relations between results of expe:iments % 5;
;f in which individuals are asked to select one item from among a number of %
yi alternatives and experiments in which he is asked to rank order the alternatives. g ;
! Some of the most important theoretical work in the area of PRT may be ; fz
found in Luce (1959). Unfortunately, nearly all attempts to develop PRT ; ;
."ﬁ quickly lead to the apparently anomolous result to be shown below (Block & ;
_;{ Marschak, 1960, p. 111; Luce, 1959, p. 69; Luce & Suppes, 1955, pp. 356-358). : ﬁ‘
Jﬁ L First, however, the axioms of the theory must be carefuily specified. ; ;
;i ; in ooing this, it is impcrtant (the reasons for this will become clear i 2
é later) to distinguish between the 'calculus axloms" and the ""'oroper axioms. F:

Calculus axioms are those containing no ''extra-logical constants' (Braithwaite,
9 g

1959, p. 429) and may be thought of as providing the basic logic for manipu-

ra

b lating the sentences in the theory. Proper axioms, on the other hand, are 49
B

A : E .
H those containing non-vacuously extra logical constants and correspond to the § 3
9 "substeriive’ axioms for the theory.
b . :

. b ) g f:}-'
¢ The Axioms B
R %
& The distinction between calculus and proper axloms will be made more a
i clear by a specific consideration of the axiom sets used by Luce (1959).

The calculus axioms for Luce's PRT




Aot L R

are those of the probability calculus and are set out as bszlow:
cafl) For sc< T, 0 :_PT(S) <1
ca(2) PT(T) = ]

ca(3) if R, S€Tand RNS =@, then PT(R us) = Pr(R) + PT(S).

In axiom ca(l), T is a finite subset of the iliversal set U; and it is
asserted that for any subset S of T, the probability that some element x

(of T) is in S (designated by PT(S)) is greater than or equal to zero and

less than or equal to one. Axiom ca(2) tells us the probability that some
element x (of T) {s in T equals one. Axiom ca(3) says that if R and S are two
subsets of T such that the intersection of R and S is the empty set (@), the
probability that some eiciment x (of T) is in R union S equals the sun of the
probabilities that x is in R or S.

The next thing to be done is to specify the proper axioms. Let us restrict
ourselves to situations in which an individual is faced with three alternatives,
and let A = {a, b, c} denote an arbitrary set with three elements. Then
PA(x) will be the probability that an individual will choose x as his most
preferred alternative from the set A (that is, the variab!< x may take on the
value a, b, cr c). A might be the set of dishes on a menu with "a'' representing
roast beef, ''b' :teak, and ''¢"' hamburger. PA(a) would then be the probability
of preferring roast beef out of the alternatives in A.

Further, let p(x, y) <enote the probability that an individuai prefers
alterpative x to alterrative y in the reduced sst {x, vy}. ‘Finally, EKX. y, 2}
will be the probability of ranking the three alternatives from most preferred
to least preferred in the order x, y, z. The notation p(x, y) and pi(x, Y, 2)
is an abbreviation of the set notation introduced above. For example, p(x, y’

(y) =

replaces Pix, y}(x), and statements like P/, y} (x)+ B v}

F{x; y}( {x, ¥y} ) = 1 are rewritten




i el s -;"‘ - ! 2 ) ". . 4 | -
. x <oy e R AT
TR s e 7 5 o et 2
5
as p(x, y) + ply, x) = 1. 1t will be assumed throughout this paper that

- none of the functions Pro Py p takes the value zero for any argument.

0

With this notatjon several proper axloms relating how zlternatives are

$

. oy

3 ranked can be written. The first such axiom will be the decomgpos]tlon
E ax (om:

L pa(1) (Decomposition): p(x, y, z) = Pa(x)ply, 2)

The decomposition axiom simply states that the probability of preferring
X to y and y to 2 may be decomposed into the product of the probability of
choosing x as the most preferred alternative in A and the probability of

preferring y to z.

]
3
RN .'.;L.:.- m?"‘i‘i'v;‘i:"“-: B Nl e

'é The second assumption is the consistency axiom:

i3 pa(2) (Consistency): (i) Palx) = plx, v, z) + p(x, z, y)

E

£ = =3 Y

& (i1) plx, y) =plx, v, 2) + B(x, 2, y) + plz, x, y)

The intended interpretation of this axiom should be fairiy self evident,

It simply asserts that there is consistency between choice rankings and that

% A o
g S S o i

adding irrelevant alternatives will not change the ranking., An important
concern then might be in alternative ways of caléulating plx, y). That is,
what is the probability of say, preferring steak to roast beei when hamburger
is not available? Proper axioms (1) and (2) together with the calculus

axioms can be used to prove:

‘ PA(x)
. Theorem 1: p(x, y) =
-3 Palx) + Paly)

Proof:

? f' (]) P(X, Y) & PA(x)p(y, z) + PA(x)p(z, y) + PA(z)p(x, y)

: by pa(2) (1i) and pa(1)
(. (2) plx, y) (1= P, (2)) = P,(x)(ply, 2) + p(z, y)) = Pp(x)

J since ply, z) + p(z, y) = |

R L N st i B
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Pa(x)
(3) plx, y) = —————r P - PA(z) Is assumed to be ¥ 0
(i - Py(2)
(8) 1 - Pp(2) =P, (x) + PAly) by ca(2) and ca(3)
P {x) -
(5) plx, y) = A hy substitutlon of (4) Into (3)‘.

P,(x) + P, (y)

Theorem 1, in a more general form, is knuwr as Luce's cholce axiom. It
can easily be shown that Thzorem | together with proper axiom | or proper axiom 2
impiles the other proper axiom. This can be shown to be true where the
cardinailty of the alternafive set A Is any finite n and not only for n equai
to three. Equally important, there is empirical evidence suggesting that
Theorem 1 provides highly accurate predictions of reduced set cholce
probabilitles for certain types of alternative sets.

Now, let PA*(x) be the probability of choosing x as the least preferred
alternative in A. Similarly, let p*(x, y) = P?x, y}(x) and let p*(x, y, z)
be the probability of having the rank order x, y, z when asked to rank from
feast preferred to most preferred. The last proper axiom, the reversibility
axiom, can now be stated:

pa(3) (Reversibility): (i) p*(x, y, z) = p(z, y, x)

(i1) p*(x, y) = ply, x)
(iii) palt) and pa(2) hold for PA*. DA TR
The reversibility axiom simply states that the probabiiity of gettlng a certain
ranking when going from most preferred to least preferred is the same as
jetting the reverse of that ranking when the criterion is going frcm least to
most preferred.

Surprisingly, it Is possible to prcve that if decomposition, consistency,

and reversibillty hold, all alternatives are preferred with equal probability,

that is, that preferences are random. |In other words:
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Theorem 2: PA(d) PA(b) PA(C) PA (a)

=

TR R

= B e

* *
Py (b) = Pa (c) = 1/3 .

Proof: It will be sufficient to show PA(x) = PA(y), since axiom pa(3) iImplies

*
the same result for P

() 5lx, v, 2) = R, (X)ply, 2)

by pa(1)

@) 57z, v, %) = P *@p*(y, %) = P, (2)pix, y)

(3) P, (x)ply, 2) = P "(2)p(x, y)

(4) PA(x) =
(5) PA(y) =

(8) p(x, y)

(7) plx, y)

(8) p(x, z)
(9) plx, y)

ply, x)
(10) p(z, x)

(11) p(x, y)
(12) Palx) =

(For a proof of

pp. 356-358.)

P (2)p(x, y)

ply, 2

Py (2)ply, x)

Pa

p(x, z)

PA(X)

Py(x) + Paly)

Pa"(2)p(x, v)

ply, z)

by pa(3)(iit) and (ii)
by pa(3) (i) applied to steps (1) and (2)

by rewriting (3)

by interchanging x and y in (4)

Theorem 1

PA*(Z)p(x. y)

+

PA*(Z)p(Y.

by substituting (4) and (5)
x) into (6)

ply, 2)

p(Y’
P(z,
p(z,

p(z,

p(y,
(y)

z)

y)

= 1/2

p(x, z)

by sinplification of (7)
by interchanging the positions of
X, ¥, z in (8)

since p(z, x) = 1 - p(x, z) =
1 - ply, 2) = p(z, y)

by (9) and (10)

substituting 1/2 for p(x, y} in (6).|

Theorem 2 for the n-alternative case, see Luce & Suppes, 1965,
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These results seem contrary to experience. Unfortunately, the culprit
is not ovbvious. Proper axioms (1) and (2} are the most likely suspects. However,
together they imply Luce's choice axiom (Theorem 1) which has considerable
empirical support. Moreover, Luce's choice axiom together with elther proper
axiom 1 or 2 implies the other. Thus if it is wished to retaln Theorem | as a
theorem, both proper axiom(l) and(2) must be retained. |f, on the other hand,
Theorem 1 is made an axiom, then both pa(l) and (2) must be thrown out. Axiom{3)
(reversibility) seems to be some psychologist'!s favorite candidate for elimination.
Their argument is that it makes no operational sense to ask a person to pick
his "least pfeferred” alternative from some set of (homogeneous) alterna-
tives. At least at first glance this claim appears very unconvincing (though
the reader who sees potential meric in it is referred to Luce & Suppes,
1965, p. 358, where the position is spelled out). One need only introspect
for a moment on the alternative set consisting of a thousand dollar Bill,
a hundred dollar bill, and a one dollar bill. Few people would find it
difficult to pick out their least preferred alternative.

Theorem 2 is not, it would seem, a trivial result. |t was obtained
by making three apparently innocuous assumptions about how individuals
related choice probabilities over a three alternative set. Yet these
proper axioms together imply that unles; FA(a) = PA(b) = PA(c). any
individual who ranks the alternative elements of a three element set in
the same fashion regardless of whether he rainks them from most preferred
to Jeast preferred or from least preferred to most preferred is exhibiting
behavior which is inconsistent with that descr-ibed by nroper axioms
(1) and (2).

What then is the theorist to do in the face of such an anomaiy?

One option is, of course, to ignore proper axiom (3) and simply develop

.-_:_L.,?_i; iy
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the theory using proper axioms (1) and (2). A second option is to investi-
gate the mathematical structure underlying the axioms in question to see
whether results which appear disturbing result directly from equally dis-
turbing (but more subtle) properties of the class of models satisfving these
axioms (and therefore theorems as well). Indeed, this appears to be the
approach suggested by Luce and Suppes (1965) when they wrote:

ﬁThey (criticisms of probabilistic choice theories) suggest that we cannot
hope to be completely successfui i~ dealirg with preferences until we Include
some mathematical structure over the set of outcomes that, for example, permits
us to characterize those outcomes that are simply substituable for one
another and those that are special cases of others. Such functional and
logical relations among the cutcomes seem to have a sharp control over the
preference probabilities, and they cannot long be ignored lp. 337].“ While
it is not completely clear what is meant by the above passage, it does seem they
are suggesting a closer investigation of the mathematical (logical) structures
underlying various theories of choice. This paper represents an attempt

to explore this suggestion for probabilistic ranking theories which contain %

proper axioms (1) and (2).

Model Theory
tn most of the behavioral science literature, no clear distinction is
drawn and maintained betwean models and theories. Indeed, perhaps the most

common practice is to use 'model' and 'theory' interchangeably as synonyms

2s in Tversky (1972): 'Since the present theory describes choice as
an elimination process- governed by successive selecilon of aspects, it
"
is called the elimination-by-aspecis (EBA) model [p. 285]. it would seenm

that, from Professor Tversky's perspective, It could as.well have been

called the EBA theory.

BnT e tr BT AR
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There certainly is nothing wrong with having synonyms for such frequently
used words as ''theory.'' However, when '‘theory' is used in Its technical
sense, there is a ciear distinction which can be made between ''models'' and
""theories," and this distinction has useful consequences for the topic at
hand. A theory, in its technical sense, is a set of sentences which is
closed under deduction; that is, the set contains any sentence that is
logically implied by any other sentences in the set. This concept requires
some preassigned logical framework (e.g., first-order predicate calculus)
(Quine, 1968, p. 281). Whenever an axiom system is proposed (as in
Tversky, 1972), this usage of ''theory'' is implied. On the other hand,

a nontechnica' thecry is simpiv a set of sentences asserted to be tjue.
For example, the entire body of knowledge on some subject may be referred
to as the theory of that subjec:, as in the phrase ''choice theory."

A correspeonding technical notion of a model for a set of sentences
(theory) is a mathematical structure which satisfies those sentences. Thus
a model is a set-theoretic structure while a theory is a collectlon of
sentences in some language. More specifically, a set~theo-etic structure M
is a set of elements (objects), A = {a;, ay,...}, together with a set of
relations of order i, P]i', le',..., and may be expressed

M= {A; P]i], Pziz,..., Pni”,...,\

A formal language L in ~iich properties of M can be expressed will
consist of formulas gen<rated bv a specified set of rules, say the predicate
calculus, from an alphabet consisting of relation symbols (R‘, Raye.),
variable symbols (x;, x,,...), connectives (7,v,A, . .), and quaﬁtifiers
(V,3). Since functions and constants are special kinds of relations,
function symbols (f;, fp,...) and constant symbols (c;, cz,...) wlll also

be used in L. Tte lanquage L will be assumed to be first order, that is,
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its variables range over the elements of A (as opposed to ranging
over tha subsets of A, or sets of subsets, etc.). Sentence; in L are
formulas containing no free variables.

Let T be a set of axioms in a lariguage L. |f @ is a mapping of
constant symbols occurring in T into the set of objects A, and also a3
napping of relation symbols occurring in T Into the set of relations in
M, the~ M provides an irterprecation of T under . If thls interpretation
results in the sentences in T being true, then M is said to satisfy T
and M is a mocel of the axiom set T. A model for a set of axioms then, is
a set-theoretic mathematical structure which interprets the axioms in such
a way that the axioms ar: true.

The distinction just made between objects and symbols denoting
objects (constarts) and between relations and relation symbols should
be emphasized. The reason for this cistinction is that each mapping
onto the objects and relations in a structure M provides an lnter;
pretation of the symbols in T. This is important since (as will be shown)
a given axiom set can have more than one interesting interpretation, and
only some of them will be models of the set,

One of the most obvious problems with the above definition of mode]

is what is meant by a sentence being '"'t.uz." Rather than provide an ex-
tended discussion of truth, the reader is referred to Tarski (1944),
The important question here is.not how dc we know whether a particular
sentence is in fact true but rather what s “eant by asserting a sentence
to bz true. This latter semantic question is treated in considerable
detail by Tarski for important classes of formal languages (including
those to be dealt with in this paper) .

In order to make this defin'tion of model more clear, consider a very

simple theory T' which contains only two proper axioms:

L e Rl L

V. % TR




Ai: Cin) '1(x‘Rx])

A2 (Vx‘) (¥x,) (Vx3)[(x‘Rx2 A szx3) 3 x Rx3] .

Corsider further the following two mathematical structures:

Sa

3 2
M* <A;P2> where A is a finite set of alternatives and P 198
Y is the binary reiation "Is preferrec to" .§:
5 §
59 and ‘ §J7
| M <L;F2> where L is the set of living males and F2 f{

is the binary relation "Is the father of',
If the symbol R is mapped onto Pz. and the variables are assumed to range
over A, then Al would read as “for all aiternatives in the set A, it is
never the czse that an alternative in A is preferred to itself.'"' Axiom A2
wouid read: ‘'For any triple of alternatives in the set A, if the first
alternative is preferred to the second, and the second is preferred to
the third, then the first alternative is preferred to the third." To :
ciaim M* to be a model of T' is to assert the truth of these two £

sentences (Al and A2). Further, Tarski (1944) shows that asserting a

sentence to be true Is equivalent to saying It is satisfied by all its

objects. Again, there exists no ¢lgoriihm for determining whether a

ik o o
fon it S o e N

particular sentence is in fact saczisfied by all its objezts. Howeyer, to

St T

%
assert that T' is modeled by M is to say that each sentence in T' Is

satisfi2d by all its objects.
’ . *k
Let us now examine the rzlation between the structure M~ and the

sentences in T'. Do we want to assert that M** is a model of T'? In

R U R VI
= i

this case the @ function maps the relation symbol R onto the relation >

Interpreting Al with M** results in the sentence:

& : ""For all males in the set of ali living males, It is neyer
the case that a male is the father of himself."

T TR AT TIPE T VI R O e
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To assert that M** is a model for T: is to assert this to be a true

¥ sentence. And, indeed, the sentence Is emplrically true. However, we

must be careful not to move hastily from thls observation to asserting

that M** is a model for 7'. Tle definition of a model requires that all

i ' the axioms be true when interpreted by a model. (tonsider A2. Under M**

we have the following sentence:

'""For any three males in L, if malej is the father of malep,

b and maley is the father of male3, then male is the
father of male3."

T Again, to assert M is a model for T' is to assert the truth of this

sentence. Yet this sentence is empirically untrue. Inceed, an ordinary

language translation of this sentence would result In the assertion that

'g a grandfather is the fath:r of 4is grandson. The reason 'is preferred to'

seems a satisfactory interpretation of R and "is the father of" does not

is that "is preferred to' is gene -ally thought to be a transitive relation
(as asserted by A2) and "is the fai*:r of" Is not transitive, Thus the
structure M** is not a model for T'.

Another transitive relation is ''is greater than." If the letter "I"
denotes the set of integers, and '»" denctes ''is greater than," Ehen the
structure(I, >)is a model for T'. A third transitive rslation ""Is greater
than or equal to'' may be denoted by ">'".  Consider whe:her the structure

<I, >>is a model of T'. Clearly axiom A2 Is true with this Interpretation;

however, Al reads as follows:

"For any irteser, it is never the case that the integer
Is greater than or equal to itself.!

Most of us would assert this se,.tence to be false and not allow

K A <I, _>_> as a model for T'.

B
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Hopefully, these overly simplistic examples prcvide a general sense

of how the terms 'model' and ''theory' are being used in this paper.
Moreover, it should be clear fru: the abos discusslon that it is possible
to develop a theory of madsls. In Robinson's (1963) words: ‘'Model
theory deals with the relations between the properti:z of sentences or
sets of sentences specified in a formal language on one hand, and of the
mathematical structures ot sets of structures which satisfy these sentences,
on the other hand [p. l]“.

Not: the similarity between Robinson's definition of model theory
and Luce and Suppes' qucte in the previous section. In the next section
a result analogous to Theorem 2 (proved using proper axioms (i) - (3))
will be shown to exist for the mors commonly encountered proper axioms
(1) and (2), and some of the model theoretic concepts introduced here

will be used to analyze these two axiom sets.

Algebraic Results
This section begins with some algebraic manipulations on ihe
equations in proper axiocms(ljand(2) The results, theorems 3 and 4, together
with theorems 1 and 2, will then be discussed in model-theoretic terms.
In the three alternative case there are six possible rankings of
those alternatives. For nocational convenience the corresponding

probability values will be denoted by the set of symbols

Tf= {ay, az, by, by, ¢y, c2} as follows:

;(X, Y Z) ol a] -F’-(Y, X, Z) = bz
F(xu Z, Y) = 1) F(Zu Y X)

—p.(st' Z, X)' b] B.(Z, Xy Y)
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The following derivation in terms of the value a, = p(x, y, z) mav be
applied to each of the elements inq:.‘ in tiie decompecsition formula for
plx, v, 2),

plx, vy, 2) = Fax) + ply, 2). (1)
(1) may be expanded by making substitutions on the right according to the
formulas in axiom pa(2), yielding

plx, v, 2) = (plx, v, 2) +p(x, z, y))(p(x, vy, z) + ply, z, x) + Bly, x, 2)).
Substitutirg the notation from above yields the equation

a = (a) + a,) (9 + b, + bz). (3)
Expanding the right side of (3)

3 = alz + aa, + ajby + a;by + azbI 'k asz' (4)
and collectling terms

0 = al2 + (a, + by + b2 = lay + ay(by + b,), (5)

yielas a quadratic expression In a;. Applylng the quadratlc formula to solve

for 3 results in

| = (ap + by + b+ S = (ap + by + b))% — hay(b, + by)  (6)
B 2 -

a‘ A

And letting g(y‘, Yo y3) denote the function represented in (6),

Vo VR SRk i\/‘ ST Y3))2 Sl +v3) (g
2 )

9lyys vg, v3) =

the results of applying *he above procedure (1 6) to each of the six
rankings are abbrevia’ed as follows:

a); = glay, by, by) = g(by, a;, ap)

a, g(al, o cy) = g(cz. by, by) (8)

by = g(by, ¢y, ¢2) = gley, ay, ay) .

Making the natural assumptior that all the probability functions are
real-valued, the quantity under the radical in (7) must be nonnegative, thus

yielding six inequalities of the form




T

(- (y] +y, + y3))2 - Qy](yz + y3) >0

(9)

in the next section, the consequences of varying this assumption are
considered.

Suppcse now that tte values in'U are not all equal. What arz the
implications of the equatlons and inequal lties derived above upon the
range of va'ues that elements of L may assume? Theorems 3 and 4 and Inequality
(17) show cnat even after removing uxlom pa{3), the elements of T can take
on r<jatively few values.

in order to further simplify the algebraic calculations, let the

variable symbo! a be defined in the following eguation:

L7 e A (10)
Substituting (10) into (8) gives
(= (/24 a))? = byily, + vg) 2 0, ()
and rewriting (10) as (y2 ty3b=1/2 40 - Y, gives
(= Q72+ a)? - by, (172 +a=y) 20 and (12)
' (1/2 - a)?

ylz- (1/2-+~a)yI + = >n0 (13)

;+ —
Applying the quadratic formufa again, this time to find the zeros In (13),

the expression on the left in (13) is shown to take on the value zero when

Y, = (174 + o/2) + Va/2 (0 < u< 1/2), (14)

and hence (13) is satisfied when the value of Y, is outside the Interval
1850 i an i, | o Jﬁf\
(I;‘*'z"w/;’ﬂ'+’[ /8

Since only six different sets of values for the arguments of the g
function are of interest (cf. (8)), the corresponding six vzlues of a can be

denoted as follows:

a2 + b] + b2 = 1/2 + aaz b‘ + a, +a, = 1/2 + °b]
ay t ey +cy = 1/2 4 ay c, + b] + by = 1/2 ac, (15)
b2 > By c, = 1/2 + ab2 < + a, + ag = 1/2 + “c]'




Observe that o

a = -aaz, abl = -ubz, acl = -ucz and that all the u's

are in the intervat (-1/2 1/2).

Theorem 2: If %) * dgp T ... = 0g, = 0, then al!l the values Ay Ayseen,y C

are oqual.
®roof: From (15), a; = by, a, = ¢,, and by = c..
Substituting ay for by in (3), yields
(i) a) = (a] + az)(Za] + bl)'
Using the same procedure as above (1 - 6), an inzquality analogous to (9)
can he derived from (i):
(11} (1 = (23 + b))% - 8azny > 0,

- —

which can be rearranged as
2 bl = l'l
(iti) a,” = (b) + 1a; H—5—] > 0.
Applying the quadratic formula again results in

b
. 1
(iv) a, < 172 +5 - ;.

This inequality may also be derived for the pairs {(b,, b,) and {b,, a‘ , that is
1) 7 3= 7421 G5)

b2
(v) by < 1/2 +7 -\/g: and

LS

a

(vi) b2 <1/2 +_:2_-'_’- -fa-;:.
The inequalities (iv) - (vi) togethc: with a, + by + by =1/2 imply that
each of the values ay, b1= bz is less than .19. For example, if a, = .19,
then (vi) implies b, < .16, and hence by = 1/2 - (a2 + bz) > .15. However,
by > :15 implies a, < .19 since the function (1/2 + by/2 -6} is a
strictly decreasing function in the interval [0, 1] and its value at b, = .15
is less than .19. This kind of contradiction can be derived If any of the

NS
values in U is > .19. Hence all six values must fall in the Interval

(.12, .19).
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Now it is straightforward to shov that (i} implies a, = a,. Let

a, = a| + ¢ where 0 < |e| < .07. Then

-+

b])

€) since b] +tapta, =1/2

a = (a] + az)(ZaI

- (2, + €) (172
=a te (172 - € - 2a4))
which Impljes (i/2 - € -.Za]) = 0,and hence a; = 1/4 - €/2 > .215  Therefore
e 0 and a) = a3. The other equalities are derived similarly. §
Thus the assumption that not all values 1nT are equal implies *hat at :
at least one of the a's is greater than zero. For definlteness assume that

ag) > N, and let a denote this particular value. Substituting a; for yy in (13)

vields

2 (]/2 = Ct)z
a; - (/2 + a)a] + L

>0 , (16)

‘which implies (cf. 14)
a a a
ali(l/‘*'*a/?) -j;.) or a,:(l/h+7)+j;. (17)

That 1s, given the value of a3y > 0, the value of ay lies outside

srEmE R tRERE R P

Ga
an interval of length s/Zaa1 centered at (1/4 + -31). By the symmetry of

the expression in (3), the sum (e + c,) must also lie outslde that interval.
For example, if aa; = 1/€, then either a; < 1/16 and < + c, > 9/16 or
a, > 9/16 and c) + ¢y < 1/16.

Does this result make a difference? The following detailed example

b R LY T L

illustrates the implications of (17). It is only loosely analogous to a

i

choice experiment in Luce's sense; however, intuition suggests that axioms

pa(i) and pa(2) should hold.

o

Imagine three barrels, labelled U, VvV, W, each of which contains ten
balls of varying size. Barrel U contains 5 balls of slze uy, 3 balls of

size uy, and 2 balls of size u3. V contains L balls of size Vi, 3 of size

P PP SH

Eew

vo, and 3 of size v3. W contains 1 ball of size wy, 3 of size wy, and 6 of




=5 L i i . {

\ %%WW‘- o » - e e M —— -..-1-:--':ir‘:-"m*ifﬂt‘.“w_ﬁ'.nm
-‘| E) Ll S T S — R

G
size Wa. The relative sizes of the u, v, and w's are

U] >V-!7‘ Wy >U2> V2>W2>U3>V3>W3.

An event will consist of drawing three balls, one from each barrel. i 3

There are a number of probability functions one could compute in this .% %

situation using elementary notions of probability theory (i.e., expressions :5 %

implizd by ca 1-3). Let qi(X) denote the probability that the ball drawn }; g

from the X Yarrel (X = U, V, or W) is the largest of the three drawn in a i ii

aiven event. Let qz(X, Y) b the probability that the ball drawn from . Is j ,i

bigger than the ball drawn from Y. And finally, let q3(X, Y, Z) denote § j;

the probability that the sizes of the three balls are ordered x > y > z. s ;

The values of the three functions for this example are as foliows: E ;

a, (V) = 698 3, U, V) = 740 ag(U, v, W) = .59

q, (v = .254 q,(U, W} = .890 a3 (U, W, v) = .102 f

a, () = .048 a,(v, W) = .850 9, (v, W, u) = .062 %

0, (v, U) = .260 AV, U, W) = 192 § 4

: a, %, U) = .110 a3, v, u) = .006 g
qz(w, V) = .i50 q3(w, u, v} = .042 '
Using the letters )5 85, .00y C, @S before, we have a, = .596, a, = .102, "?

b] = ,062, and b] +a, + a, = 76 = 1/2 + .26 = 1/2 + A, - Applying

(17) to by, ;
25 _/?é ‘

by <F*Y T VT < .38-.36= .02 { 8

or .
1 L 26 4 /.26 . =

b] RIS = > .38+ .36 = .74 : N

However , b] does not satisfy elther inequality, implying that the functions ;
{ : 9)» Gy, and q3 do not satisfy axioms pa(1) and pa(2). i' ?J
] For the case being discussed in which at least one of the a's Js assumed .
greater than zero, an even stronger result thaq (17) can be shown. ;




ERNE R I RN L TR ST ol N ¥

3 | 20
Theorem 4: Let gari 0. Then given two values a, and ®a) (satisfying 17),

there exist exactly two combinations of values for ay, b., by, ¢y, ¢y such that

[ pa(l) and pa(2) are satisfied. %
i
| ‘ Proof: To show that a, depends only upon a and %ay» combine (7) and j
(8) to get ;
Al (@ cRE el )R V/?l - (ay + ¢, +c ))2 —Sha(c i ithcs) 7
. _ e Sl 80 (i G jley * ¢
(i) a, = 4
2 2 -
:
From (15}, {
B

e o\ - ’ -
(ll_ C] +C2-‘]/2+aal a‘. ﬁ
Substituting (ii) into (i) gives %

2 —

(172 = o)) = A1/2 - 0a))” - b3 (12 + oay - a)) q
(tiliih a2 = 5
2 i
To derive a formula for c,, begin again as in (i) '§

s 4 1 - (cy +a)+ay + V/T; = {e) +ay +ay) - bcy(ay + ay)
2 )
2

Samaboaise i

« e D A S e N S LG o e T R R O B AR
BT o T _.ﬁﬂmamm.au.
R P
Bl 4 . i ~ b o g e T e y e .

and substitute (ii) into (iv). The resulting expression can be simplifled to

2 2 .
(v) (cp + (ay + gy - 172)) = (e, - (a? tagy = 1/2)) + blcyta - aay)(a, + a,) .

! !

The squared terms cancel in (v), which can then be solved for c,t
(1/2 + cay - a])(al + az)

(vi) c, = ;

Solving (ii) for ¢, gives

1
(vii) c, = /28 a, - ¢,

Formulas for b? and b] are derived in a similar way, using another

equation from (15)

(viii) by + by = 1/2 - ag) - a,:

(‘/2 = Gal =1 az)(a] + 32)

(ix) b_ =

2 (]/2 + Ga] + a?)
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Observe that two values are generated for a,, but that for each of these
values there is a unique set of values for by by, ¢ and cz.a
As an example of a set of values obtainable according to tie for.ulas
in theorem 4, let s 7/64 and aay = 1/32. Then
iy _21-27 21 21-27 27
278 P e P2 gy o < 3wy oend <2 = yyy

or

202 g oo S el 28 = 279 . 27-28
A s | R o e

] 376N andi| S2 YA 1T
Consider now a model-theoretic framework in which the theorems proven
above in the axiomatic choice theory can be discussed. The first step Is
to define a first-order language L adequate to express the axioms and theorems .
L wi'l contain the following components:

o, (a) Relation symbols to represent >, R

(b) Function symbols with the appropriate number of arguments for the

;- probability functions P,, p, B, pA*’ p*, p* é

‘ {(c) Function symbols for +, -, -, =, Vv ;
(d) Constant symbols for 0, !

(e) variables x,, Xoyoo 2

‘ (f) Logical connectives =1, v , A , D | = %

(g) Quantifiers V, 3 . g

{ R is the set of real numbers ard "= s treated as a logical connective E

;} meaning identity. A rela*rion symbol for IR is needed so that the sets A and R .

:J can be distinguished, that is, so that variables can be quantified over just %

A or just [R. Generally the logical symbols remain implicit and L may

be described by writing a vector of non-icgical symbols, analogous to the
notation for structures. (Function symbols will have a superscript dencting
the number of arguments fn, even though a represents an n + | place relation.)

The language L is given by

1 ¢ 2 3 ] 2 3 2 iy 2 2 1
] b 2 ’ ; 1 L} ’ 5

L =<R]2, Rz'; f
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where the cymbols are written in order corresponding to the order of their 'i
intendgd interpretations in f{a) - (d) above. That is, R]2 corresponds tc %
"t f,! to teR, £2 1o e, et
As an example of a formal sentence in L, the decomposition axiom -%
pa(l) can be translated 1
pa(l): (Vx])(sz)(Vx3)ﬁ1xl = XA TIX) = XgA xp = xg A‘1R2](X])/\ i ;
Ry lgdn TRy Uxg) 2 £, xgs xg) = 15205, (), £, 0y x3))] .
In addition to pa(l) - (2) there are a number of implicit and expliclt ? :E
assumptions employed in the First part of this section which should be % 3
siated as proper axioms. Implicit are all the field axioms for real numbers E ;i
such as associativity, distributivity, existenc: of 0 and 1, and the basic {
axioms for an order relation. These w 1] be referred to as the axloms f ?1
for an ordered field. Second, it was assumed that the set A contained exactly E ?
three elements, and further that the square root function was defined only ;;
on nonnegative numbers. These axioms may be written as follows: i
pa(4) Axioms for ordered field fn
Pa(5) (xy) Bxp) xgdfiox; = xya =x) = Xy 8 x, = x5 4
TRICx DA 2Ry (k) A TR (x3) a (V) (GR) () Dy = xp v xy = v x
pal6) (1) () (R ) & Ry(x) D (F10x)) = 353 xyaE ;).
For the remainder of this section the notation T(i],..., ik) will denote :Q
El the subset of proper axioms consisting of {pa(iy),..., pa(iy)}.

The notion of 'interded interpretation' is made precise by defining a
=lass of structuresM0 whose members centain the particular functlons and

relations used in the analysis of this section. Letlﬂﬂo be the collection

of M's such that

P T SOOI - L BT g Wl
e
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A is any three-element set,iRz is the membership relation on R, PA (and
PA*) maps A into IR, p (and p*) maps A x A into (R, p (and Eﬁ) maps
A x A x A into R, and the remaining functions and constants are defined
onfR . That is, for any interpretation @ of sentences in L Into a structure
inMor R =2, pR) =R, (e, = x, e, =V
q>(c]) =0, etc. Thus two structures M and M' ir1/”\o differ only in the
six ''p" functions and in the choice of set A.

Within the classlﬁQO there :: structures wnich satisfy some of the
various subsets of T(1,..., 6). /&\0 has been defined such that each M in/hio
satisfies T(4, 5, 6). The structure defined in the barre' example,

i = <{U, vV, W UR; >, R, » a1, 92, Q3 5o - ) , satisfies

T(2, 4, 5, 6), but does not satisfy T(1, 2, 4, 5, 6). Theorem 2 states
that any structure in/A\O satisfying T(1,..., 6) must be one in which
PA(x) = 1/3 for all arguments x, p(x, y) = 1/2 for all x,y , and

plx, vy, 2) = 1/6 for all x, y, z. Hence any two such structures M and M',
since tHey differ only in having different sets A, A', are isomorphic.
Thus the axiom set T(1,..., 6) has essentially one model ?nfﬂo. Restated
in this way Theorem 2 does not seem anomalous or contrary to experience.
Similarly, Theorem 4 characterizes the subclass of,ﬁﬂo whose elements

are models of T(l, 2, 4, 5, 6), and *%1s subclass is also very small
relative to /MOE

Conclusion
At the end of the previous section, the class of models for the
axiom set T(1, 2, 4, 5, 6) was described as being small compared to/ﬁ&y
even though both are countably infinite classes. In order to make sense

out of that statement consider the inequality (17). It liplies that for

T e a o 108 e AT AR

—— L

HREA S Ul Sl A T

1 RS S T

i

e K PN b R R et e i # e 4
AR ety PR RS ARs -

b

s




e TN Tt W T S ST

et L o

24

two specific values such as p(a, b, c) and PA(c), if their sum is greater

than 1/2 by ar amount «, then there is a subinterval or "hole' In the
interval (0, 1) which must not contain either pla, b, ¢) or PA(c). In
fact, the size of that hole js given precisely asv 2y .

However since

the value of o depends upon the values of p and PA’ there is no fixed g

which applies to all structures h\/%o, and thus (17) only gives a rough
idea of the restrictions imsosed by the axioms.

A better, but still intuitive, approximation on the relative size
of the class of models can be derived from theorem 4. |t states that

only two probability values{which satisfy (17)‘ e.g., pla, b, c) and
PA(C)) need be known inorder to compute all the remaining values in a

model. For an arbitrary structure ’nﬁ&o, however, five values for p
would be needed in order to compute the sixth value using ca(2). In a
very loose way, the class of models could be thought of as less than
two-fifths the size of/ﬂo. Thus it would seem that these axioms put
"more’’ constraints on the way choice probabliities may be related than
has previously been thought to be the case.

As pointed out in the first section, the scarcity of models for an
axiom set usually has led to attempts to identify "troublesome"

axioms and remove them from the theoiy under consideration., However,
that approach sometimes causcs the loss of useful theorems (theorem 1,
in our example). The point here i¢ not whether it is desirable to have
few or many models for a theory, but rather tr offer an alternative to

the axiom-elimination approach. In model-:heoretic terms, that alter-

native is to enlarge or change the class of structures in which models

may be sought.
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Consider just the axioms pa(l!) and pa(2) for a moment. The non-
logical functions involved are just Par P P, +, and -. The p functinns
must map into a set containing elements like 0 and | and a relation >
which has some order properties, in order to satisfy the calculus
axioms , but otherwise there is no a priorl restriction on how we might
interpret those functions. A very large (with respect to M 0) class M
of structures could be defined as the class of M such that

R=(AUD 2 D P Fi® '10, 1)
where A and D are two disjoint sets, D contalns at least two distinct
elements which we call 0, 1, PA maps A into D; p maps A x A into D; p
maps A x A x A into D; + and - are any two binary operations on D;

> is a binary relation in D; and D. indicates membership in D,

1
An example of such a structure is one in which D is the szt of
complex numbers, and the values of the fuuction § (again denoted by

a,..., cy) are

.3 by = 2l = 16V7 3 - 67

a' -E- l -—u—m-—-— C; --—u—m——-—-

1 + 2V32i 10 -~ 11 V7 12 + 621
az--—-—-a—n—. bz ‘——-—71——-——- c2=

For these values, “al = 1/4, which implies that a; is in one of the
""holes" dcscribed abovc. Thus theorems 3 and 4 do not chararterize

the models of T(1, 2) in the class M, and the class of models for T(1, 2)
withinf\ properly contains the corresponding class of models with!n/‘\o.
Finally we emphasiz: that it is auestions such as these concerning the
relationships between classes of set-theoretic structures to which the

methods of mathematical mode! theory may be applied.
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